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Abstract - One of the challenges in modeling low-altitude mission scenarios at 
small bodies is the need to minimize the computation time penalty for more 
detailed shape models, especially when the scale of the detail is on the order of 
the spacecraft trajectory.  This paper describes variants of the polyhedral model 
and their relative performance.  Variations include (a) using approximations to 
the more computationally intensive terms in the acceleration and partial 
calculations, (b) using approximations for sums of terms that are 
disproportionately detailed, and (c) simply using a simpler reference 
polyhedron.  Accuracy and speed performance assessments are made for these 
variations for three cases: (a) an aggressive mapping orbit, (b) low altitude 
hovering, and (c) disturbances of regolith material at the surface of an asteroid.  
Analogous results are also shown for spherical harmonics and a three-axis 
ellipsoid. 

The results show that the benefits to using Taylor series approximations and 
carrying the history of calculations from a previous call to a nearby point can 
range from 30 to 60 percent for each augmentation.  The accuracy penalty for 
these augmentations is smaller than the uncertainties in the gravity field itself, so 
they warrant being included in gravity model software sets. 

INTRODUCTION 

Future small body mission designs require close-proximity trajectory analyses of the 
spacecraft and particles lifted from the surface due to intentional and unintentional spacecraft 
activity.  Accurate gravity modeling in particular drives the overall modeling accuracy of these 
close orbits, landings and ascents.  This dependency can be somewhat mitigated through the 
introduction of closed-loop flight path control, but there are science scenarios involving (a) 
passive science pods on the surface, or (b) low-velocity ejecta that continue to reinforce the need 
for such modeling. 

For the above scenarios, low-altitude gravity modeling must also be supplemented by a 
realistic and (wherever possible) accurate surface reference.  This combination is needed in order 
to compute accurate surface contact footprint and timing estimates, as well as disturbed particle 
distribution pattern estimates.  Surface references usually come from scientists in the form of a 
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polyhedron shape model.  By assuming that the body is homogeneous, one can use the shape 
model as the foundation for a gravity field as well.1

One of the challenges with using a polyhedral gravity field is to minimize the computation 
time penalty for more detailed shape models, especially when the scale of the detail is on the 
order of the spacecraft dimensions.  A second challenge is to preserve the surface relief modeling 
around potential landing areas to facilitate compiling more detailed landing or contact statistics.  
This paper describes variations of the polyhedral model and their relative performance attributes.   

The variations considered here are approximations to the more computationally intensive 
terms or disproportionately detailed terms in the acceleration and partial calculations.  
Representative versions of the model variations are defined, and their use in precision numerical 
integrations is described.  Representative cases include (a) a spacecraft (or a binary companion in 
a low orbit about an asteroid, (b) a spacecraft hovering at a low altitude over the surface of a 
small body, and (c) the redistribution of dust particles of varying sizes across the surface in 
response to a spacecraft making contact with the surface.  The trajectories are modeled using 
scripts that supplement the core capabilities of JPL’s MONTE program.  MONTE is an accurate 
and general-purpose trajectory program that can model many relevant force perturbations found 
in the solar system to high levels of precision. 

The key objective of this work is to describe polyhedral gravity framework that has the 
flexibility to be used on a variety of small body targets without much retooling, and that the 
computational efficiency enables mission designers and navigation analysts to focus on other, less 
standardized models which may affect the spacecraft (comet outgassing) or near-surface particle 
(ejecta distribution, static charges) trajectories. 

In the following section three scenarios at small bodies are described.  The gravity modeling 
section covers the baseline polyhedral model, along with the proposed variations.  This is 
followed by the test descriptions and setup, and finally, the results. 

SMALL BODY SCENARIOS 

The objective of scenario selection is to find a small set of cases that (a) is relevant to small 
body mission science objectives, (b) spans a variety of relative speeds, orbit energies, and surface 
coverage, and (c) can be applied not only to the investigating spacecraft, but also to particles of 
different sizes that one might encounter upon arrival. 

Mapping Orbits 

One scenario that is part of missions to all but the tiniest of small body objects is an orbital 
mapping phase.  These phases are usually planned to last from 2 weeks to 2 months in duration.  
Mapping orbit selection itself a tradeoff between the operational simplicity and robustness of a 
larger orbit versus the improved coverage rate and feature resolution available with a smaller 
orbit.  The key considerations that result in upper and lower limits to orbit size (Ref. 2) include 
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• The maneuver execution error floor, 

• The Ratio of the magnitudes of gravitational acceleration to solar radiation acceleration, 

• The small body rotation period and ellipticity, and 

• Solar radiation versus oblateness perturbations. 

In order to more easily depict some example orbit selections, the target asteroid semi-major 
axis is set to 1 AU, the spacecraft area to mass ratio is 40 kg/m2, the asteroid density is 2.5 g/cm3, 
and the spin axis direction to within a few degrees of the asteroid terminator plane (other spin 
directions are considered in the next section).  Figure 1 shows the effects that define the upper 
and lower bounds for mapping orbit size for asteroids whose masses range from µ of 10-9 to 10-3 
km3/s2 (with the Muses-C target Itokawa noted).  As a reference, traces of 3 and 10 mean asteroid 
radii are included as a function of asteroid mass, as well as the NEAR 35km science orbit around 
Eros. 

Figure 1. Mapping Orbit Size Constraints 

One upper limit on orbit size, especially for smaller asteroids, is the ratio of gravitational 
acceleration over solar radiation acceleration.  As this ratio drops, the time-averaged orbit plane 
becomes offset from the asteroid center, and it may not be possible to obtain complete radar 
coverage of the asteroid.  Figure 1 shows the allowable orbit sizes for a ratio of 10:1.  Another 
upper bound on orbit size for smaller targets is the ability of the propulsive system to properly 
place the spacecraft into the mapping orbit.  The maneuver execution error floor should remain a 
small fraction (1-2%) of the orbital velocity in order to have a reasonable chance of safely 
entering and exiting those mapping orbits.  Figure 1 also shows the allowable orbit sizes for mean 
orbit velocities of 5 and 10 cm/s.   

The orbit size dynamical lower limit is due to the irregular shape of the asteroid.  The 
oblateness has no direct secular effect on orbit size or eccentricity.  The ellipticity, however, can 
lead to instabilities which act on the orbit eccentricity, placing the spacecraft on an escape or 
crash trajectory.  To mitigate this possibility, spacecraft are placed in retrograde orbits, and near-
synchronous orbits and orbits resonant with the asteroid’s particular elliptical profile are avoided.  
The dashed traces in Figure 1 show the orbit sizes for a family of orbit periods.  Since the 
majority of asteroid rotation periods are in the range of 5 to 10 hours, setting the lower orbit size 
limit so that the resulting orbit period is greater than 24 hrs will keep most mapping orbits out of 
phase with the asteroid shape perturbations.  This results in orbit sizes on the order of 3-6 mean 
radii. 

Another interesting property of this orbit size is that it can be representative of the orbit sizes 
of small binary objects also orbiting the primary body, which would be of interest to mission 
designers.  While these objects do not naturally remain in such controlled orbits, they are subject 
to the same effects as artificial satellites (albeit with a higher solar ballistic coefficient), and 
particles whose orbit sizes significantly exceed these bounds will not last long as binary objects. 

Hovering 

Inertial hovering is an enabling strategy for observing small bodies, especially those with 
very small masses (µ < 10-8 km3/s2).  Typical techniques considered to maintain the desired 
distance use imaging and ranging against the entire body, so the standoff distances are typically 
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several radii in size, distances greater than the mapping orbit sizes described in the previous 
section. 

Body-fixed hovering is a strategy that can enhance the science return of surveys of candidate 
landing or sampling sites.  With this approach one can remain at short distances from the area of 
interest for longer periods of time than are possible with multiple flybys.  The navigation strategy 
in this case also relies on optical data and altimetry, but the images usually only cover a few 
percent of the total surface area at any time.  The tradeoff here is between minimizing the 
distance to the area of interest, and minimizing the introduction of additional activity (slewing, 
hazard avoidance, thruster contamination of the surface) that might add significant risk or 
diminish science return.  For scenario development a 24-hour hovering campaign is considered 
(long enough to allow the ground in the loop for one update to the observation profile), and a 
standoff distance of a quarter of the mean radius is used. 

Sampling 

There are many sampling mechanisms being considered for asteroid and comet sample return 
missions, including scoops, brushes, drills, and coring devices.  Two attributes that most of them 
have in common are (a) either the sampling mechanism itself or its housing will inadvertently 
disturb particles near the actual sample, and (b) the velocities involved between the sampling 
device and the uncollected surface material will be sufficient to place some fraction of these 
particles into trajectories that traverse a significant fraction of the small body.  These qualities can 
also be attributed to landing dynamics as well. 

This study does not intend to cover the wide variety of possible low-velocity ejecta profiles.  
However, there is a need to assess the impact (literally) of inadvertently lifted particles on the 
spacecraft.  Thus, a representative case needs to be defined to show the impact of different gravity 
models on the forecasted trajectories.  For the sake of scenario development, a scoop-like 
sampling device disturbs a parcel of regolith.  The uncollected particles move in nearly the same 
direction away from the spacecraft at a low angle of incidence to the local surface, at less than 
escape velocity. 

GRAVITY MODELS 

In this section we define the polyhedral gravitational potential, attraction, and gravity 
gradient, then describe the proposed augmentations. 

Polyhedron Method 

Using the notation in (Ref. 3) and Figure 2: 

Figure 2. Polyhedron Triangular Face/Vertex Diagram (L), Face, Edge Normals (R) 
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and Ee and Ff are dyads formed from the face and edge normals: 
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The Laplacian is also of special interest, as it can be used to determine whether the particle of 
interest is outside or inside the polyhedron: 
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Taylor Series Approximations 

The original algorithm has been coded for many applications that appear in the literature2.  
Profiling these implementations using relevant test cases is the proper manner to identify 
improvements that can be made without sacrificing any performance at all.  Assuming that has 
been done, one obvious step to consider is to minimize the computations that go into each of the 
terms of equations (1)-(3).  In particular, computation of logarithms and arctangents take longer 
than the surrounding matrix and vector multiplications3.  The function calls in equations (4) and 
(5) can be replaced by their one-term and two-term Taylor series approximations: 
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different formulation of the polyhedral gravity field. 
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The resulting errors for one-term and two-term Le and ωf approximations are on the order of 
(eij/ri+rj) and (nijk/dijk) to the third and fifth powers, respectively.  In the code, these 
approximations only take effect these ratios go below a certain value (0.1 in these tests). 

Face/Edge Histories 

The next level of computation consolidation is to consider approximations for groups of 
terms for the faces and edges that are far from the object.  Another possibility, which would be 
beneficial to cases where the object motion is limited to a small fraction of the polygon, is to 
leverage off of the computations performed in the previous iteration.  One can carry histories of 
(eij/ri+rj) for each edge, and the signed distance to each face, and update the Le and ωf 
computations only if the current values exceed a particular threshold. 

Coarser Shape Representations 

Another simplification is to use a coarser shape representation.  The addition of the Taylor 
series approximations on a more coarse shape leads to larger errors in Le (the edges grow while ri, 
rj remain the same), but smaller errors in ωf (the solid angle described by ri, rj, and rk, which 
remain constant, grows).  For the mapping orbit cases, the Le errors should dominate. 

TESTS 

This section describes the numerical experiments performed to evaluate the performance of 
the original polyhedral model as well as the variations for the selected small body scenarios. 

Setup 

While small body masses span several orders of magnitude, rather than repeat the evaluations 
over multiple bodies, a mass of µ = 3(10-8) km3/s2 was selected and placed in a NEO-like orbit.  A 
smaller mass would obviate the need for a mapping orbit scenario.  A larger mass would make it 
easier to see the effects of gravity mismodeling on the mapping orbit, but at this size, variations in 
the surface dust dynamics would be easier to evaluate.  Since there have been fewer studies of 
dust dynamics in the literature, it was decided to focus on a body of this size. 

As with the small body mass, there are many shape models available, both derived from 
direct and radar observations, as well as simulated.  The shapes reflect different assumptions 
about (a) the amount and distribution of regolith material, (b) the amount and distribution of 
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volatile material near the surface, and (c) the impact history upon the body, and (d) the internal 
homogeneity of the body itself.  For these scenarios the current shape models of asteroid 1998 
ML14 (ref. 5) were selected.  The shape models are polyhedra with triangular faces.  The more 
detailed model, used as truth for thus study, has 16320 faces and 8612 vertices.  The coarser 
representation has 1020 faces and 512 vertices.  Both shapes are shown in Figure 3. 

 

Figure 3. Reference (L) and Coarse (R) Shape Representations of Asteroid 1998 ML14 

Numerical Evaluations 

Across the three scenarios, it was determined that two types of evaluations were needed.  
Trajectory integrations of spacecraft and particles are the backbone of analyses and operations, so 
they were included to show the cumulative effect of gravity mismodeling upon these particular 
trajectories.  Perturbations due to solar radiation pressure and third body effects were included.  
The mapping orbit was a 3km retrograde orbit in the terminator plane, with the spin axis at 
roughly 45 degrees to both the asteroid orbit plane and the terminator plane at epoch.  The 
trajectory was integrated for two months, a duration intended to represent a long-duration 
mapping campaign. 

In some implementations a variable-step integrator may be used, and the number of calls to 
the gravity model may be a function of the fidelity of the model itself.  To isolate that effect in the 
overall performance evaluation, individual calls to the gravity model were made for a specific 
number of points.  In the case of the mapping orbit, a set of 192 points, evenly spaced over a 
sphere at mapping orbit altitudes (with about a 10 degree spacing between adjacent points) was 
selected.  In the hovering case, a grid with the same number of points was created, forming a box 
with dimensions about 5% of the body mean radius. 

Both sets of evaluations were performed with the MONTE (Mission-analysis, Operations, 
and Navigation Toolkit Environment) software set developed at the Jet Propulsion Laboratory, 
using double precision code.  In addition, cases were added that included (a) a best-fit 
homogeneous tri-axial ellipsoid, and (b) 4th and 12th order spherical harmonics that were 
computed from fits to the reference shape model. 
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RESULTS 

Before the results can be evaluated, it is necessary to establish just how accurate the reference 
shape and the assumption of homogeneity can be in practice.  In this evaluation, we assume that 
in a real mission we would have mass estimates based on initial flybys good to about 0.1%, which 
provides a threshold for mapping orbit accuracy.  At the altitudes used in the hovering scenario, 
shape determination and rotation modeling errors will contribute to the error budget.  With a 
reasonable camera and image collection campaign, shape uncertainties will be on the order of 20 
cm horizontal, 5 cm vertical, and 3 mm point to point4.  The corresponding spin pole errors will 
be no larger than 0.1 degrees (Ref. 6).  On the surface, internal inhomogeneities and regolith 
distribution would be the leading causes of density variation, observed to be on the order of 1% at 
Eros (Ref. 7).  The two conclusions to keep in mind are  

(1) Modeling errors below 0.1% do not contribute much to the overall ability to predict 
spacecraft and particle trajectories in the planning phase, 

(2) Navigation requirements in operations typically call for accelerations to be known to 
the 10-12 km/s2 level, or about .001% of the average acceleration encountered near 
the surface for the mass level considered in this study.  Augmentations will have to 
be made to whatever gravity model strategy is selected (typically through the 
introduction of mascons or functional representations of density variation) for the 
hovering and surface scenarios. 

Figure 4 shows the accuracy and relative runtime performance for the gravitational 
acceleration function calls for the various models at mapping orbit altitudes of 3 radii.  The 
maximum and average errors and standard deviation of the errors are shown for each case.  The 
two-term approximation (bottom right) gave nearly a 40% improvement in run time at essentially 
no cost in accuracy, for both the reference and coarse shape models.  Going to the one-term 
approximation had only a fraction of that benefit, with an increased error level.  The runtimes 
with the coarse shape model did seem to nearly scale as the number of vertices and shapes, while 
still performing at acceptable error levels for this particular shape choice.  The absolute 
magnitude of the reference and coarse shape approximation cases does appear to be dominated by 
the Le errors. 

The ellipsoidal and spherical harmonic cases relative to each other seemed to perform as 
expected, with the higher error level partially attributed to challenges in properly applying the 
best-fit orientation parameters to the ellipsoid and harmonics in the integrator.  Figure 5 shows 
the fit errors of the ellipse to the polyhedron vertices as a function of surface position, along with 
the region covered by the trajectory integrations (+/- 50 degrees).   

It is difficult to concisely and clearly show the spatial distribution of gravity errors and their 
temporal effect on the integrated mapping orbit trajectory, since the cumulative position errors 
distort the ability to continue comparing instantaneous acceleration values.  In Figure 6, the errors 
of the coarse shape model in latitude and longitude are shown as a function of time, and the large 
excursions are in phase with the equator crossings at East Longitudes between 0 and 90 degrees.  
One can see that the longitudinal errors reach peak values only over these equator crossings, 
while the latitude errors climb and fall with alternating ascending and descending crossings (keep 
in mind that the asteroid rotation period is much shorter than the spacecraft orbit period).  Plots 
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like this are a useful tool for visualizing the mismodeling effects and provide a reasonable 
consistency check to the analyst. 

 9



   

Figure 4.  Gravity Acceleration Errors vs. Runtimes 

 

Figure 5.  Normalized Ellipsoid Fit Errors 
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Figure 6.  Trajectory Error Growth with the Ellipsoidal Model 

Finally, the addition of the face and edge histories to the polyhedral library did improve run 
time with essentially no additional error.  It is difficult to give a simple description of the average 
run time savings, since the histories will only help when the successive calls all have very similar 
position inputs.  But in the most opportunistic cases, this technique alone can remove two thirds 
of the run time off of the original model (see Table 1).  The benefits of these variations are largely 
independent of each other. 

Case Normalized Run Time (Reference = 1.0)

Coarse Shape Model 0.125 

2-Term Taylor Series Approximation 0.615 

Face / Edge Histories 0.364 

Coarse Shape and Taylor Series 0.091 

Coarse Shape and Histories 0.033 

Taylor Series and Histories 0.0269 

Coarse Shape, Taylor Series, and Histories 0.01 

Table 1.  Runtime Improvement Summary 
(Relative to Reference Shape and Full Polyhedral Model) 

CONCLUSIONS 

The results show that the benefits to using Taylor series approximations and carrying the 
history of calculations from a previous call to a nearby point can range from 30 to 60 percent for 
each augmentation.  The accuracy penalty for these augmentations is smaller than the 
uncertainties in the gravity field itself, so they warrant being included as part of gravity model 
software sets for small bodies.  These augmentations are simple to describe and implement, 
altogether resulting in about 20 extra lines of code, and very few extra parameters for the 
software interface.   

These improvements are but a small sample of the possibilities that warrant further 
investigation.  These topics may lead to more complex, or more memory intensive augmentations, 
but not in all cases.  Other methods and topics include, but are not limited to, 

• Continued profiling of the polyhedral code, with emphasis on the remaining square root 
and triple product calls. 

• The impact of all proposed augmentations on numerical stability, especially near the 
surface. 

• Ellipsoidal harmonics, with emphasis on enhancing numerical robustness. 
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• Polyhedral gravity formulations that account for variations in density5. 

• Direct numerical integration of the mass distribution, packaged with a surface density 
model, as described in (Ref. 9). 

• Robert Werner has also suggested reformulations of the polyhedral model so that ωf 
remains essentially constant from the vantage point of the test mass. 
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